Preliminary DNA Data Liard River, BC

December 2019

Photos: © Catherine Paquette/WWF Canada

T R E Λ M

www.STREAM-DNA.com

Hajibabaei Lab, Centre for Biodiversity Genomics, University of Guelph

WWF Canada

Environment and Climate Change Canada

Table of Contents

1. INTRODUCTION	2
1.1 Benthic Macroinvertebrates	2
1.2 Background of STREAM	3
1.3 Objective of Report	5
1.4 Study Objective	5
2. METHODOLOGY	5
2.1 Study Area	5
2.2 DNA Sampling and Processing Methods	6
2.2.1 Measures to Avoid DNA Contamination	6
2.2.2 Benthic Macroinvertebrate Field Sampling Protocol	6
2.2.3 Laboratory Methods	7
3. RESULTS	7
3.1 Overview	7
3.2 Taxonomic Coverage	8
4. FUTURE SUGGESTIONS	12
5. REFERENCES	12
6. APPENDICES	14
7. GLOSSARY	15

DISCLAIMER: This report is a preliminary report based on the samples and information provided by the corresponding organisation. Identifications of taxa are based on best available information at time of analysis and reporting.

PRELIMINARY DNA DATA

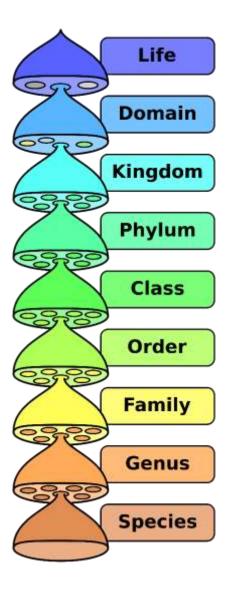
1. INTRODUCTION

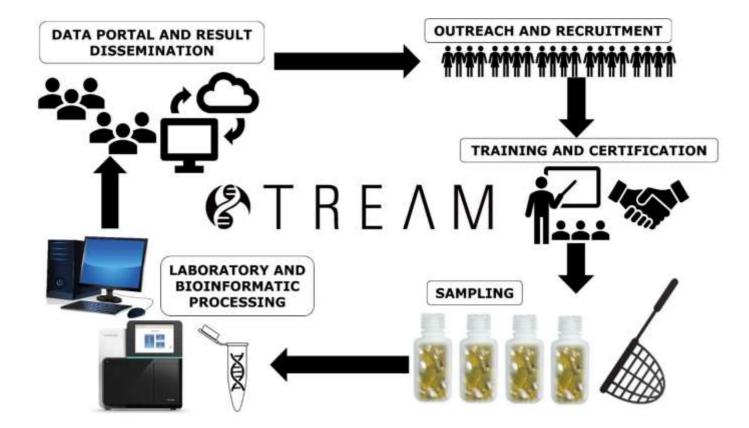
1.1.Benthic Macroinvertebrates

Freshwater benthic macroinvertebrates are typically insect orders, as well as crustaceans (e.g. crayfish), gastropods (e.g. snails), bivalves (e.g. freshwater mussels) and oligochaetes (e.g. worms), which are located on or within the benthic substrate of freshwater systems (i.e. streams, rivers, lakes; (Covich et al., 1999; Schmera et al., 2017). Benthic macroinvertebrates occupy important roles in the functioning of freshwater ecosystems, namely nutrient cycling within aquatic food webs and also influence numerous processes including microbial production and release of greenhouse gases (Covich et al., 1999; Schmera et al., 2017).

Biological monitoring (biomonitoring), referring to the collection and identification of particular aquatic species is an effective method for measuring the health status of freshwater systems. Currently, macroinvertebrates are routinely used for biomonitoring studies in freshwater habitats because they are relatively sedentary, have high species richness and a range of responses to different environmental stressors and contaminants, including temperature (Curry et al., 2018; Geest et al., 2010; Rosenberg and Resh, 1993; Sidney et al., 2016). Some groups of macroinvertebrates (mayflies, Ephemeroptera; stoneflies, Plecoptera and caddisflies, Trichoptera), commonly referred to as EPT groups, are more sensitive to change in the aquatic environment and are deemed important bioindicator taxa for assessing freshwater quality (Curry et al., 2018; Hajibabaei et al., 2012, 2011).

Traditionally, macroinvertebrates are identified to family level (**Figure 1**) through morphological identification using microscopy, however there has been a shift from this labour-intensive methodology to a DNA-based approach (Curry et al., 2018; Hajibabaei et al., 2012, 2011). 'Biomonitoring 2.0' combines bulk-tissue DNA collection (i.e. benthos) with next-generation sequencing (NGS), to produce highquality data in large quantities and allows identification to a finer resolution than traditional methods (Baird and Hajibabaei, 2012; Hajibabaei et al., 2012).




Figure 1. Graphical representation the classification of organisms.

1.2. Background of STREAM

STREAM (Sequencing The Rivers for Environmental Assessment and Monitoring), is a biomonitoring project, which involves the combination of community based monitoring and DNA metabarcoding technologies to assess the benthic macroinvertebrate communities in watersheds across Canada (**Figure 2**). STREAM is a collaboration between World Wildlife Fund (WWF) Canada, Living Lakes Canada

(LLC) and Environmental and Climate Change Canada (ECCC), led by the Hajibabaei Lab at Centre for Biodiversity Genomics (University of Guelph, Canada). STREAM is integrated with the Canadian Aquatic Biomonitoring Network (CABIN) programme, through the implementation of existing nationally standardized protocols for freshwater monitoring. The aquatic biodiversity data generated in STREAM will be added to the existing CABIN database, to improve our understanding of the health of Canadian watersheds.

STREAM was established with the main premise of fast-tracking the generation of benthic macroinvertebrate data from 12-18 months to ~2 months, while increasing the taxonomic resolution of the data produced.

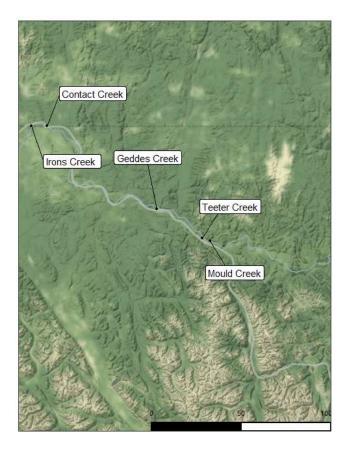
Figure 2. Graphical representation of the STREAM feedback loop for DNA biomonitoring of benthic invertebrates.

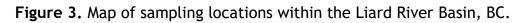
PRELIMINARY DNA DATA

1.3. Objective of Report

Data and information included in this report is a first and preliminary examination of results from the Liard River (BC), which consists of a list of the macroinvertebrate taxa detected within the samples submitted. This report aims to highlight the different macroinvertebrate EPT taxa and provide basic richness metrics as a useful contribution for community groups to assess river health.

1.4. Study Objective


The 'Liard Community-based biomonitoring and eDNA Project' aims to simultaneously build upon the existing Dane Nan Yedah environmental monitoring program to include water quality and benthic invertebrate monitoring, ensuring that there is sufficient baseline data to inform future development decisions. At the same time, this collaboration will further the efforts to create a network of Guardians programs using DNA technology and contributing to a better national understanding of the health of Canada's freshwater ecosystems.


2. METHODOLOGY

2.1. Study Area

In September 2018, this study was conducted across five pre-determined sampling locations within the Liard River Basin (British Columbia; Figure 3). Sampling was conducted by Kaska Land Guardians, for the first year of the annual benthic macroinvertebrate monitoring with STREAM.

Additional site information, including coordinates, number of samples collected, and CABIN site status is provided in Appendix A.

2.2. DNA Sampling and Processing Methods

2.2.1. Measures to Avoid DNA Contamination

Prior to sampling, kick-nets were sanitized in bleach for 45 minutes and kept in clean garbage bags until they were used in the field. Gloves were used when handling all sampling materials to avoid contamination. During the kick-netting, the surveyor in the water wore two pairs of gloves while handling the kick-net. The outer pair of gloves was removed prior to transferring the contents into sampling containers so that the gloves used when contacting the sample were guaranteed to be clean. Each sampling container was individually sealed in a Ziploc bag prior to placing them in the cooler.

2.2.2. Benthic Macroinvertebrate Field Sampling Protocol

Benthic macroinvertebrate DNA samples were collected following the STREAM Procedure for collecting benthic macroinvertebrate DNA samples in wadeable

streams (v1.0 June 2019) and the CABIN Field Manual for Wadeable Streams (2012). The STREAM procedure outlines steps to minimize DNA contamination and preserve DNA samples and was employed in conjunction with sampling steps outlined in the CABIN manual. All samples collected were transported to the University of Guelph Centre for Biodiversity Genomics, preserved in 90% Ethanol, and stored in freezers at -20°C in the lab until they could be processed.

2.2.3. Laboratory Methods

Benthic samples were preserved in 90% ethanol and stored at -20°C until processing. Benthic samples were coarsely homogenized in a sterile blender and DNA was extracted using a DNeasy® PowerSoil® kit (Qiagen, CA) kit. Extracted DNA was then processed following the standard Hajibabaei Lab protocol for Next-Generation Sequencing (NGS).

3. RESULTS

3.1. Overview

The raw data output from NGS produced sequences for a range of taxa, including vertebrates such as bird and human. This taxa list was reduced to only sequences that identified macroinvertebrates associated with freshwater and riparian ecosystems, and that were of high enough quality to match reference sequences. These results consisted of 21 Orders, 44 Families, 69 Genera, and 84 species of macroinvertebrates. Across all five sites, species richness (number of species present) ranged from 21 in Contact Creek and Geddes Creek to 30 in Irons Creek (**Figure 4**). A full taxonomic list identified to the Species level for macroinvertebrates is included as a separate Excel spreadsheet.

Note: The benthic macroinvertebrate kick-net sample procedure often results in collection of both aquatic and terrestrial taxa, however terrestrial taxa are not identified using the traditional taxonomic identification methods. Due to the nature of DNA metabarcoding, both terrestrial and aquatic macroinvertebrates are identified and described using the DNA approach in this report.

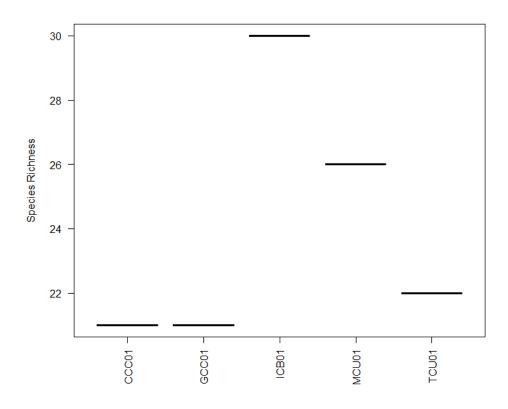


Figure 4. Species richness of each site sampled. Only species taxonomically assigned with high confidence (bootstrap support >= 0.70) are included. Contact Creek (CCC01) = 21 taxa, Geddes Creek (GCC01) = 21 taxa, Irons Creek (ICB01) = 30 taxa, Mould Creek (MCU01) = 26 taxa, Teeter Creek (TCU01) = 22 taxa.

3.2. Taxonomic Coverage

A range of macroinvertebrate species were detected across the five sites. Traditional bioindicator EPT species were detected in all five sites, including Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies; **Table 1**). These EPT species are typically sensitive to many pollutants in the stream environment and are therefore associated with clean water (Gresens et al., 2009; Laini et al., 2019; Loeb and Spacie, 1994). Within these five sites, some EPT species such as *Baetis bicaudatus* (small minnow mayfly) and *Zapada cinctipes* (common forestfly), were detected across all five sites, whereas *Arctopsyche grandis* (net-spinning caddisfly) and *Paraleptophlebia heteronea* (blue quill mayfly) were only detected in one site.

Table 1. List of macroinvertebrates identified to the species level. P = present. Grey cells indicate absence. Highlighted in blue are the traditional EPT bioindicator orders present. Only species taxonomically assigned with high confidence (bootstrap support >= 0.70) are included. Site 1 = Contact Creek; Site 2 = Geddes Creek; Site 3 = Irons Creek; Site 4 = Mould Creek; Site 5 = Teeter Creek.

Таха						Sites					
Order	Species	Common name	Aquatic?	1	2	3	4	5			
Coleoptera	Optioservus ovalis	Riffle beetles	Yes				Р				
Coleoptera	Stenelmis crenata	Riffle beetles	Yes	P			Р				
Coleoptera	Atheta stercoris	Rove beetles	No		Р						
Diptera	Eukiefferiella claripennis	Non-biting midges	Yes			Р	Р	Р			
Diptera	Micropsectra lacustris	Non-biting midges	Yes			Р	Р				
Diptera	Orthocladius dorenus	Non-biting midges	Yes			Р					
Diptera	Orthocladius mallochi	Non-biting midges	Yes	Р			Р				
Diptera	Orthocladius oliveri	Non-biting midges	Yes				Р				
Diptera	Pagastia orientalis	Non-biting midges	Yes	Р							
Diptera	Pagastia orthogonia	Non-biting midges	Yes				Р				
Diptera	Paratanytarsus laccophilus	Black flies	Yes			Р					
Diptera	Rheotanytarsus pentapoda	Black flies	Yes			Р					
Diptera	Helodon pleuralis	Black flies	Yes			Р					
Diptera	Simulium arcticum	Black flies	Yes			Р					
Diptera	Simulium argus	Black flies	Yes					Р			
Diptera	Simulium chromatinum	Black flies	Yes			Р		Р			
Diptera	Simulium saxosum	Black flies	Yes			Р					
Diptera	Heringia coxalis	Hoverflies	No				Р				
Ephemeroptera	Ameletus celer	Mayflies	Yes				Р				
Ephemeroptera	Baetis bicaudatus	Mayflies	Yes	Р	Р	Р	Р	Ρ			
Ephemeroptera	Baetis flavistriga	Mayflies	Yes			Р					
Ephemeroptera	Baetis phoebus	Mayflies	Yes				Р				
Ephemeroptera	Baetis tricaudatus	Mayflies	Yes	Р	Р	Р					
Ephemeroptera	Caenis latipennis	Mayflies	Yes	Р		Р					
Ephemeroptera	Drunella coloradensis	Mayflies	Yes	Р	Р	Р	Р	Р			
Ephemeroptera	Drunella doddsii	Mayflies	Yes	Р	Р	Р	Р	Ρ			
Ephemeroptera	Drunella grandis	ndis Mayflies Ye		Р		Р					
Ephemeroptera	Ephemerella dorothea	Mayflies	Yes	Р		Р					
Ephemeroptera	Cinygmula kootenai	Mayflies	Yes			Р					
Ephemeroptera	Cinygmula mimus	Mayflies	Yes		Р	Р					
Ephemeroptera	Epeorus deceptivus	Mayflies	Yes				Р	Р			
Ephemeroptera	Epeorus grandis	Mayflies	Yes		Р		Р	Ρ			
Ephemeroptera	Epeorus longimanus	Mayflies	Yes		Р	Р					
Ephemeroptera	Rhithrogena robusta	Mayflies	Yes	Р			Р	Р			
Ephemeroptera	Paraleptophlebia heteronea	Mayflies	Yes			Р					

Order	Species	Common name	Aquatic?	1	2	3	4	5
Haplotaxida	Dendrodrilus rubidus	Worms	No		Р			
Haplotaxida	Eiseniella tetraedra	Worms	Yes				Р	
Haplotaxida	Chaetogaster diastrophus	Worms	Yes		Р	Р		
Haplotaxida	Nais bretscheri	Worms	Yes			Р		Р
Hemiptera	Chaitophorus populifolii	Aphids	No				Р	
Hemiptera	Euceraphis gillettei	True bugs	No				Р	Р
Hymenoptera	Vespula alascensis	Wasps	No				Р	
Lepidoptera	Phyllocnistis populiella	Aspen leaf miner	No				Р	
Plecoptera	Capnia coloradensis	Stoneflies	Yes		Р	Р	Р	
Plecoptera	Capnia petila	Stoneflies	Yes				Р	
Plecoptera	Eucapnopsis brevicauda	Stoneflies	Yes			Р		
Plecoptera	Utacapnia columbiana	Stoneflies	Yes			Р	Р	
Plecoptera	Alloperla serrata	Stoneflies	Yes				Р	Р
Plecoptera	Plumiperla diversa	Stoneflies	Yes			Р		Р
Plecoptera	Sweltsa borealis	Stoneflies	Yes	Р		Р		
Plecoptera	Sweltsa coloradensis	Stoneflies	Yes			Р	Р	
Plecoptera	Paraleuctra occidentalis	Stoneflies	Yes			Р		
Plecoptera	Prostoia besametsa	Stoneflies	Yes			Р		
Plecoptera	Zapada cinctipes	Stoneflies	Yes	Р	Р	Р	Р	Р
Plecoptera	Zapada columbiana	Stoneflies	Yes	Р	Р		Р	Р
Plecoptera	Zapada haysi	Stoneflies	Yes				Р	Р
Plecoptera	Zapada oregonensis	Stoneflies	Yes			Р		Р
Plecoptera	Isoperla petersoni	Stoneflies	Yes		Р	Р		Р
Plecoptera	Isoperla sobria	Stoneflies	Yes		-			Р
Plecoptera	Megarcys signata	Stoneflies	Yes	Р	Р	Р	Р	Р
Plecoptera	Taenionema pacificum	Stoneflies	Yes		Р	Р		
Plecoptera	Taenionema pallidum	Stoneflies	Yes	Р	Р	Р	Р	Р
Trichoptera	Apatania comosa	Caddisflies	Yes			Р		
Trichoptera	Apatania sorex	Caddisflies	Yes			Р		
Trichoptera	Brachycentrus americanus	Caddisflies	Yes		Р	Р		Р
Trichoptera	Micrasema bactro	Caddisflies	Yes			Р		
Trichoptera	Glossosoma alascense	Caddisflies	Yes		Р	Р		
Trichoptera	Glossosoma intermedium	Caddisflies	Yes		Р	Р	Р	
Trichoptera	Glossosoma verdonum	Caddisflies	Yes	Р			Р	
Trichoptera	Arctopsyche grandis	Caddisflies	Yes			Р		
Trichoptera	Hydropsyche betteni	Caddisflies	Yes	Р			Р	Р
Trichoptera	Parapsyche elsis	Caddisflies	Yes	Р	Ρ		Р	Р
Trichoptera	Stactobiella delira	Caddisflies	Yes			Р		
Trichoptera	Lepidostoma unicolor	Caddisflies	Yes			Р		
Trichoptera	Chyrandra centralis	Caddisflies	Yes				Р	
Trichoptera	Ecclisomyia conspersa	Caddisflies	Yes					Р
Trichoptera	Onocosmoecus unicolor	Caddisflies	Yes				Р	
Trichoptera	Rhyacophila bifila	Caddisflies	Yes			Р		
Trichoptera	Rhyacophila brunnea	Caddisflies	Yes	Р		Р		Р

Order	Species	Common name		1	2	3	4	5
Trichoptera	Rhyacophila harmstoni	Caddisflies	Yes				Р	Р
Trichoptera	Rhyacophila narvae	Caddisflies	Yes	Р	Р			
Trichoptera	Rhyacophila pellisa	Caddisflies	Yes			Р		
Trichoptera	Rhyacophila vocala	Caddisflies	Yes				Р	Р
Trombidiformes	Testudacarus minimus	Mites	No			Ρ		

Figure 5. Some examples of the EPT taxa detected. Top left: *Arctopsyche grandis* - a species of net-spinning caddisfly (Trichoptera) in the family Hydropsychidae. Top right: *Megarcys* - a genus of springflies (Plecoptera) in the family Perlodidae. Bottom left: *Brachycentrus* - a genus of humpless casemaker caddisflies (Trichoptera) in the family Brachycentridae. Bottom right: *Ameletus* - genus of mayfly (Ephemeroptera) in the family Ameletidae. All photos: ©CABIN Taxonomy.

4. FUTURE SUGGESTIONS

As there is currently only one collected sample per site, for future sampling it would be beneficial to sample in triplicate, to ensure results observed are consistent across samples.

5. REFERENCES

- Baird, D.J., Hajibabaei, M., 2012. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039-2044. https://doi.org/10.1111/j.1365-294X.2012.05519.x
- Covich, A.P., Palmer, M.A., Crowl, T.A., 1999. The Role of Benthic Invertebrate Species in Freshwater Ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience 49, 119-127. https://doi.org/10.2307/1313537
- Curry, C.J., Gibson, J.F., Shokralla, S., Hajibabaei, M., Baird, D.J., 2018. Identifying North American freshwater invertebrates using DNA barcodes: are existing COI sequence libraries fit for purpose? Freshw. Sci. 37, 178-189. https://doi.org/10.1086/696613
- Geest, J.L.V., Poirier, D.G., Sibley, P.K., Solomon, K.R., 2010. Measuring bioaccumulation of contaminants from field-collected sediment in freshwater organisms: A critical review of laboratory methods. Environ. Toxicol. Chem. 29, 2391-2401. https://doi.org/10.1002/etc.326
- Gresens, S.E., Smith, R.J., Sutton-Grier, A.E., Kenney, M.A., 2009. Benthic macroinvertebrates as indicators of water quality: The intersection of science and policy. https://doi.org/10.1163/187498209X12525675906077
- Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G.A.C., Baird, D.J., 2011. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLOS ONE 6, e17497. https://doi.org/10.1371/journal.pone.0017497

- Hajibabaei, M., Spall, J.L., Shokralla, S., van Konynenburg, S., 2012. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28. https://doi.org/10.1186/1472-6785-12-28
- Laini, A., Viaroli, P., Bolpagni, R., Cancellario, T., Racchetti, E., Guareschi, S., 2019. Taxonomic and Functional Responses of Benthic Macroinvertebrate Communities to Hydrological and Water Quality Variations in a Heavily Regulated River. Water 11, 1478. https://doi.org/10.3390/w11071478

Loeb, S., L., Spacie, A., 1994. Biological Monitoring of Aquatic Systems. CRC Press.

McQuaid, B., n.d. Watershed Science Institute 30.

- Rosenberg, D.M., Resh, V.H. (Eds.), 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Springer US.
- Schmera, D., Heino, J., Podani, J., Erős, T., Dolédec, S., 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787, 27-44. https://doi.org/10.1007/s10750-016-2974-5
- Sidney, L.A., Diepens, N.J., Guo, X., Koelmans, A.A., 2016. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates. Aquat. Toxicol. 176, 88-96. https://doi.org/10.1016/j.aquatox.2016.04.017

6. APPENDICES

Appendix A. Summary table of sample sites, including site name, date of collection and site coordinates.

Site	Site Name	River	Province	No. Samples Collected	Date of Collection (MM/DD/YYYY)	Latitude	Longitude	CABIN Status
1	Contact Creek	Liard	BC	1	09/26/2018	59.99928	-127.726	Potential Reference
2	Geddes Creek	Liard	BC	1	09/26/2018	59.59694	-126.671	Test
3	Irons Creek	Liard	BC	1	09/24/2018	59.99806	-127.877	Test
4	Mould Creek	Liard	BC	1	09/26/2018	59.44158	-126.156	Potential Reference
5	Teeter Creek	Liard	BC	1	09/26/2018	59.45264	-126.233	Potential Reference

7. GLOSSARY

Term	Meaning
Benthic/benthos	The ecological region at the lowest level of a body of
	water such as an ocean, lake, or stream, including the
	sediment surface and some sub-surface layers.
Biomonitoring	The science of inferring the ecological condition of an
Diomonitoring	ecosystem (i.e. rivers, lakes, streams, and wetlands) by
	examining the organisms that live there.
Bootstrap support	Statistical methods used to evaluate and distinguish the
	confidence of results produced.
Bulk-tissue DNA	This refers to the collection and removal of a reasonable
sample	quantity of representative material (including organisms
	such as river bugs) from a location (i.e. river bed).
DNA extraction	Isolation of DNA from either the target organism (i.e. DNA
	from an insect leg) or from an environmental sample (i.e.
	DNA from a water or benthos sample).
DNA Metabarcoding	Amplification of DNA using universal barcode primers (e.g.
	universal for invertebrates) to allow sequencing of DNA
	from target organisms (e.g. invertebrates) from
	environmental samples (e.g. river water or benthos).
Environmental DNA	The DNA released into the environment through faeces,
(eDNA)	urine, gametes, mucus, etc. eDNA can result from the
	decomposition of dead organisms. eDNA is characterized by
	a complex mixture of nuclear, mitochondrial or chloroplast
	DNA, and can be intracellular (from living cells) or
	extracellular. Environmental DNA: DNA that can be
	extracted from environmental samples (such as soil, water,
	or air), without first isolating any target organisms.
EPT groups	The three orders of aquatic insects that are common in
	the benthic macroinvertebrate community:
	Ephemeroptera (mayflies), Plecoptera (stoneflies), and
	Trichoptera (caddisflies).
Macroinvertebrate	Organisms that lack a spine and are large enough to be
	seen with the naked eye. Examples of macro-
	invertebrates include flatworms, crayfish, snails, clams
	and insects, such as dragonflies.
Metrics	The method of measuring something, or the results
	obtained from this.
Next-generation	Use of next-generation sequencers (i.e. Illumina) to
sequencing (NGS)	millions or billions of DNA strands in parallel.
Richness	The number of species represented in an ecological
	community, landscape or region. Species richness is
	simply a count of species, and it does not take into
	account the abundances of the species or their relative
	abundance distributions.

Riparian	Relating to or situated on the banks of a river.
Sample	The process of making an environmental sample (i.e.
homogenization	benthos) uniform. For liquid/benthos samples, this often involves mixing using a blender so that DNA is evenly distributed within the sample.
Taxa	Unit used in the science of biological classification, or
	taxonomy.